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Multidimensional economic complexity and
inclusive green growth
Viktor Stojkoski1,2, Philipp Koch 1,3 & César A. Hidalgo1,4,5✉

To achieve inclusive green growth, countries need to consider a multiplicity of economic,

social, and environmental factors. These are often captured by metrics of economic com-

plexity derived from the geography of trade, thus missing key information on innovative

activities. To bridge this gap, we combine trade data with data on patent applications and

research publications to build models that significantly and robustly improve the ability of

economic complexity metrics to explain international variations in inclusive green growth.

We show that measures of complexity built on trade and patent data combine to explain

future economic growth and income inequality and that countries that score high in all three

metrics tend to exhibit lower emission intensities. These findings illustrate how the geo-

graphy of trade, technology, and research combine to explain inclusive green growth.
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Sustainable development is often defined as the process of
meeting human development goals while simultaneously
sustaining the natural environment1–4. This approach

implies that development and the environment are inter-
dependent and that economic growth can be sustained only if it is
inclusive and green5,6.

To achieve sustainable development, countries need to con-
sider multiple economic, social, and environmental factors7–12.
This multiplicity of factors, however, can be hard to quantify and
compare. Economic complexity methods provide a solution to
this problem13,14 by leveraging data on the geographic distribu-
tion of economic activities to estimate the implicit presence of
multiple factors. These estimates have been validated by their
ability to explain international variations in economic
growth15–24, income inequality25–27, and emissions28–31. The
reason why complexity metrics work is that they capture infor-
mation about productive structures that escapes simple aggregate
metrics, such as GDP or market concentration indexes. Unlike
these metrics, which aggregate values regardless of the activities
involved, economic complexity metrics capture information
about the sophistication of activities that is implicit in their
geographic distribution. For instance, according to a market
concentration index (such as the Herfindahl–Hirschman index or
information entropy), a country that exports 80% bananas and
20% cars is the same as a country that exports 80% cars and 20%
bananas. Economic complexity metrics break this symmetry by
incorporating information about the sophistication of each
activity that is implicit in spatial patterns of specialization.

Today, the most commonly used metrics of complexity are
based on trade data23,30,32. Trade data, however, can miss key
information about innovative activities, such as patent applica-
tions and research publications, that could be relevant to the
geography of inclusive green growth. For example, research and
technology can shape production processes, affecting the skills
and compensation of workers and the emission intensity of
industrial activities. Moreover, trade-based metrics of complexity
can systematically underestimate the complexity of economies
that are distant from global markets, which in turn might distort
predictions about their inclusive green growth33,34. That is, the
complexity of some economies that are rich in natural resource
exports but distant to markets, such as Australia, Chile, and New
Zealand, might be better reflected in their ability to produce
outputs such as scientific research and patentable innovations
than sophisticated exports. The same may be true, but in reverse,
for manufacturing heavy economies that are deeply integrated
into their neighbors’ value chains, such as Mexico or Czechia.
These are countries with a complex tradeable product sector, but
as we will show, with comparatively less sophisticated research
and innovation sectors.

That is why the recent literature on economic complexity has
begun using data on patents35, employment36,37, and research
papers38, to estimate the complexity of countries, cities, and
regions. But these metrics are rarely combined in work using
complexity methods to explain the geography of inclusive green
growth39,40.

To bridge this gap, we introduce a multidimensional approach
to economic complexity that combines data on the geography of
exports by product, patents by technology, and scientific pub-
lications by field of research. We use this approach to explain
variations in economic growth, income inequality, and green-
house emissions.

But why would the complexity of economies explain the geo-
graphic variation of inclusive green growth?

Consider the exports of X-rays and iron ore. The contribution
of these exports to GDP is related to their export value, but their
contribution to economic complexity is quite different since

X-rays are a high-complexity product (pushing the complexity of
an economy up) while iron ore is not. In fact, according to data
from the Observatory of Economic Complexity41, X-rays have a
product complexity of 1.46, whereas iron ore has a product
complexity of −1.84. Since complexity metrics are related to the
sophistication of economic activities, a unit of GDP generated
through the production of X-rays should be cleaner and more
inclusive than a unit of GDP generated through iron ore mining.

This is an opportunity cost argument. Consider the economies
of Switzerland, Singapore, or Sweden. These economies engage an
important part of their population in relatively sophisticated
activities (they are high-complexity economies). While these
activities have an associated level of emissions, an ability to
contribute to economic growth and affect the way in which
income is distributed, complexity metrics do not capture their
contribution to these outcomes in absolute terms. Instead, they
capture their contribution relative to other activities. In simple
terms, they capture the idea that, in the absence of X-ray
equipment production, some of these engineers would be
involved in mining.

Thus, we expect measures of economic complexity to help us
explain variations in macroeconomic outcomes if they are effec-
tive at capturing information about economic structures. Also, we
expect these methods to benefit from data about multiple activ-
ities (e.g., trade, patents, and research).

In fact, we find that the combination of trade, patent, and
research publication data significantly and robustly improves the
ability of economic complexity methods to explain inclusive
green growth. In particular, metrics of trade and technology
complexity—but not of research complexity—combine to explain
international differences in economic growth and income
inequality. In addition, countries that score high in all three
metrics tend to have lower emission intensities. We also find that
there is a negative interaction between trade and technology
complexity when explaining growth, indicating that some of the
information captured by these two metrics is redundant (and
hence the metrics are partly substitutes). However, we find no
negative interaction when explaining income inequality. Finally,
when it comes to emissions, we find that interaction terms
dominate the models, meaning that countries with lower emis-
sions tend to score high in all complexity metrics. These results
are robust to a variety of controls (total exports, number of
patents, number of publications, GDP per capita, etc.) and are
confirmed by an instrumental variable robustness check where
the complexity of each country is replaced by the average of its
most structurally similar non-neighbors.

These findings expand the knowledge about the role of eco-
nomic complexity in inclusive green growth and help open a new
avenue of research that explores the combination of multiple
sources of data to create improved policies for achieving sus-
tainable development.

Results
We use the Economic Complexity Index (ECI) method (see the
“Methods” section) to estimate three separate metrics of eco-
nomic complexity: (1) trade complexity (ECI (trade)), using
export data from the Observatory of Economic Complexity41,
(2) technology complexity (ECI (technology)), using patent
applications data from World Intellectual Property Organiza-
tion’s International Patent System; and (3) research complexity
(ECI (research)), using published documents data from SCI-
mago Journal & Country Rank portal42. We investigate their
individual and combined contribution to explaining interna-
tional variations in economic growth, income inequality, and
emissions intensity. The economic growth and emissions
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intensity of a country are estimated using GDP and emissions
data from the World Development Indicators43, whereas the
income inequality data are taken from the Estimated Household
Income Inequality44,45. See Supplementary Note 1 for a detailed
description of the data.

International differences in multidimensional economic com-
plexity. Figure 1a presents three binary specialization matrices
(Mcp) for countries’ exports by product, patents by technology,
and publications by research area for the year 2014. Colored dots
indicate that a country is specialized in an activity, i.e., that the

ECI ranking
98 N/A491 1 9849

Trade ECI ranking

Fig. 1 Multidimensional economic complexity. a Specialization matrices of countries considering exports by product, patents by technology, and
publications by subject category. b Maps showing the rankings of ECI (trade), ECI (technology), and ECI (research). c Comparison between the ECI
rankings of countries based on ECI (trade), ECI (technology), and ECI (research). a–c All data are for the year 2014.
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share of its exports, patent applications, or the number of papers
are larger than the share of that activity in the world output
(Mcp ¼ 1).

Figure 1b, c compare the three ECI rankings, and Fig. 2
compares the ECI values. The figures show that, while the ECI
metrics are correlated, they recover the qualitative behavior
motivating this research: that trade-based measures of complexity
tend to underestimate the complexity of some countries that are
far from global markets (e.g., Australia and New Zealand) and
overestimate the complexity of some manufacturing economies
(e.g., Mexico and Czechia).

For example, consider Mexico (MEX), Czechia (CZE),
Australia (AUS), and New Zealand (NZL). Mexico and Czechia
rank high in trade complexity (MEX is #24 and CZE is #6) but
lower in technology and research complexity. Mexico drops to
#26 in the technology rankings and to #44 in the research
rankings, whereas Czechia ranks #22 in technology and #34 in
research. This could be explained in part by the fact that Mexico’s
and Czechia’s exports do not serve global markets but the value
chains of their neighbors. In fact, over the last decade, 76% of
Mexico’s exports went to the United States (ranked #12 in trade
complexity), and 31% of Czechia’s exports went to Germany
(ranked #3 in trade complexity)41. For comparison, the number
one export destination of the median country represents 21% of
its total exports, meaning that the United States and Germany
are, respectively, heavily overrepresented in Mexico and Czechia’s
exports (see also Supplementary Note 1).

Australia and New Zealand show the opposite pattern. Both
countries rank relatively low in trade complexity (AUS is #76 and
NZL is #47) but are global leaders in technology and research
rankings. Australia ranks #8 in technology complexity and #3 in
research complexity, while New Zealand ranks respectively #12
and #10. This is explained in part by the fact that Australia and
New Zealand are far from global markets and export commod-
ities to China, a country that is over 7000 km away from their
capitals. Thus, trade data miss key aspects of the complexity of
these economies that are recovered using data on patents and
research.

Multidimensional economic complexity and inclusive green
growth. Next, we explore how the information provided by
technology and research complexity combines with trade com-
plexity to explain international variations in future economic
growth, income inequality, and greenhouse gas emissions. We
investigate this question piecemeal, first by employing models
that include each variable separately, then by including variables
together, and finally, by using interaction terms. In addition, we

test for robustness by using an instrumental variable approach
and several controls.

We follow the literature15,30,32 and set up panel regressions of
the form

yct ¼ f ECIdct
� �þ aTXct þ μt þ b0 þ ect ;

where yct is the dependent variable for country c in year t
(economic growth, income inequality, emission intensity),
f ECIdct
� �

is a function of the three complexity indices (d= trade,
technology, or research), Xct is a vector of control variables that
account for other key factors (e.g., population, GDP per capita,
etc.), μt describes time-fixed effects to account for any unobserved
period-specific factors, b0 is the intercept, and ect is the error
term, (see Supplementary Note 1 for more information about the
data and Supplementary Note 2 about the regression
specification).

We then validate and select a separate “multidimensional
model” for growth, inequality, and emission intensity using the
following criteria. First, the multidimensional model must lead to
the largest significant increase in explanatory power over the
baseline model (given by the coefficient of determination
adjusted-R2 and validated by a Wald F-test). The baseline models
are defined in each respective section. Second, in the multi-
dimensional model, all included complexity coefficients (indivi-
dual and interaction terms) must be statistically significant,
considering clustered standard errors. Finally, we require the
model to pass two types of robustness checks.

First, we check for robustness by exploring whether the effects
hold after including additional variables. These are measures of
size (population), human capital (years of education), dependence
on natural resources (natural resource exports per capita), and
metrics of the intensity of each respective output (exports per
capita, patent applications per capita, and the number of research
documents per capita). We also try alternative definitions of
complexity40,46,47 and check whether the results hold for
noncomplexity metrics of economic structure, such as measures
of market concentration (Shannon information entropy and the
Herfindahl–Hirschman index (HHI)) (see Supplementary Note 3).
Unfortunately, because of limited time series data, our panels do
not allow us to control for country-fixed effects in the growth and
inequality model (e.g., the growth model consists of only two time
periods). We do add country-fixed effects as a robustness check to
the emission intensity model. We call the model with all
significant and robust explanatory variables the “final model.”
This is the best model for explaining variations in economic
growth, income inequality, and emission intensity.

Fig. 2 Comparison between trade, technology, and complexity ECI using 2014 data. a Scatterplot for the relationships between ECI (trade) and ECI
(technology) (R2= 0.51, p-value < 10−12), b ECI (trade) and ECI (research) (R2= 0.44, p-value < 10−12), and c ECI (research) and ECI (technology)
(R2= 0.54, p-value < 10−12).
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Second, we also use an instrumental variable approach where
complexity values are replaced by the average complexities of
three similarly specialized non-neighboring countries. This is
designed to address the possibility that the relationship between
economic complexity and the studied macroeconomic outcomes
may be endogenous when local conditions lead to both higher
complexity and better outcomes. By replacing complexity
estimates with the average of non-neighboring countries with
similar specialization patterns, we decouple complexity estimates
from other local conditions.

Economic growth. Economies with high levels of complexity
relative to their GDP per capita are known to experience faster
long-term economic growth15–24. The idea is that higher com-
plexity economies can participate in sophisticated sectors that
support higher wages. But while this relationship has been
repeatedly validated using trade15–17,23 and employment
data21,37, there is a lack of research exploring whether technology
and research complexity play a similar role.

Here we test the effect of trade, technology, and research
complexity on economic growth by looking at the 10-year
annualized GDP per capita growth (in constant PPP dollars)
using two periods, 1999–2009 and 2009–2019. The baseline

model includes the log of the initial GDP per capita (in constant
PPP dollars) and time-fixed effects (see Supplementary Note 4).
This captures Solow’s idea of economic convergence48 (the
baseline model is presented in column 1 of Table 1, adjusted
R2 ¼ 0:25).

Table 1 shows the effect of the three complexity metrics and
their interactions. We find that trade complexity is a significant
and positive predictor of economic growth (column 2, adjusted
R2 ¼ 0:34) and that technological complexity has a similar
explanatory power (column 3, adjusted R2 ¼ 0:33). Research
complexity, however, is not significantly related to future
economic growth (column 4, adjusted R2 ¼ 0:24). We also find
that technological complexity significantly enhances the ability of
trade complexity to explain future economic growth (columns
5–8 of Table 1). This effect increases when we interact trade and
technology complexity (columns 9–12 of Table 1), leading to our
multidimensional model (column 9). The multidimensional
model leads to an improvement in explanatory power over the
trade complexity regression of 7 percentage points (adjusted
R2 ¼ 0:41). In this regression, both trade and technology
complexities have a positive impact on growth, but their
interaction term is negative and significant, suggesting a strong
substitute relationship. In general, countries with larger trade ECI

Table 1 Multidimensional complexity and economic growth.

Dependent variable: Annualized GDP pc growth (1999–09, 2009–19)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

ECI (trade) 5.658*** 4.006*** 5.981*** 4.022*** 12.255*** 12.134*** 17.331
(1.172) (1.405) (1.274) (1.469) (2.955) (3.863) (10.986)

ECI (technology) 2.577*** 1.351 3.323*** 2.098** 9.099*** 5.483** 12.756
(0.745) (0.893) (0.765) (0.928) (2.497) (2.647) (10.129)

ECI (research) 1.184 −0.890 −2.541 −2.563 6.318 0.380 −5.469
(1.724) (1.568) (1.617) (1.607) (4.847) (4.282) (12.688)

ECI (trade) × ECI
(technology)

−12.260*** −22.692
(3.656) (15.524)

ECI (trade) × ECI
(research)

−10.111* −3.392
(5.831) (20.029)

ECI (research) × ECI
(technology)

−3.856 0.435
(4.556) (16.737)

ECI (trade) × ECI
(research) × ECI
(technology)

9.443
(25.142)

Controls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Log of population
F-statistic

34.15*** 22.29*** 0.88 14.87***

Log of human capital
F-statistic

7.81*** 5.13** 0.50 5.06***

Log of natural resource
exports per capita
F-statistic

32.51*** 15.08*** 1.46 12.52***

Log of production
intensity F-statistic

23.09*** 3.49* 0.49 27.50***

HHI F-statistic 8.96*** 5.05** 0.15 13.70***

Entropy F-statistic 8.61*** 4.91** 0.48 13.60***

Log of Fitness
F-statistic

6.79** 0.34 2.31 9.10**

i-ECI F-statistic 8.94*** 4.26** 0.01 21.80***

Instrumental variables
model F-statistic

19.50*** 8.2*** 0.48 20.00***

Observations 152 152 152 152 152 152 152 152 152 152 152 152
R2 0.256 0.358 0.341 0.260 0.373 0.361 0.355 0.388 0.427 0.377 0.361 0.452
Adjusted R2 0.246 0.345 0.327 0.245 0.356 0.343 0.338 0.367 0.407 0.356 0.339 0.417

Each regression includes period-fixed effects. Clustered standard errors in brackets. *p < 0.1, **p < 0.05, ***p < 0.01. The F-statistics for the models in columns 1–3 were estimated using models given in
Supplementary Tables 1–3. The F-statistics for the model in column 9 were estimated using models estimated in Supplementary Tables 4–9.
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than technology ECI experience higher growth, but countries that
score poorly in both dimensions experience lower growth. Also,
the F-statistics imply that the coefficients of the trade and
technology ECI remain significant even when including the log of
population and the log of human capital. In addition, the
multidimensional model clearly outperforms similar models
based on production intensity, measures of diversification, and
other measures of complexity. Trade and technology ECIs also
outperform measures of concentration (entropy and
Herfindahl–Hirschman). The final model includes the multi-
dimensional ECI (trade, technology, and their interaction), the
Solow term (GDP per capita), the log of the human capital, and
the log of natural resource exports per capita (see Supplementary
Note 4).

Income inequality. Economies with less complex trade structures
are also known to exhibit higher levels of income inequality25–27.
The idea is that firms operating in knowledge intense activities
promote inclusive institutions because of their need to attract and
retain talent. Firms in less complex activities do not face this
constraint and benefit from a more extractive institutional
environment. Thus, we should expect higher levels of economic
complexity to be associated with lower levels of inequality.

To explore the ability of multidimensional complexity to
explain variations in income inequality, we model an economy’s
Gini coefficient, a standard measure of inequality. Larger values
for the Gini coefficient indicate larger income inequality. We
divide the data into four 4-year panels: 1996–1999, 2000–2003,
2004–2007, 2008–2011, and 2012–2015 and set up a baseline
model given by the Kuznets curve: the idea that as an economy
develops market forces first increase and then decrease income
inequality49 (Gini ~ GDP per capita, its square, and time-fixed
effects, see Supplementary Note 5).

We find that trade and technology ECIs are significant and
negative predictors of income inequality with, respectively,
adjusted R2 ¼ 0:54 (column 2 of Table 2) and R2 ¼ 0:48 (column
3 of Table 2). Trade and technology ECIs also outperform
measures of concentration (entropy and Herfindahl–Hirschman,
see Supplementary Note 5). Moreover, they provide an important
improvement over the baseline model, which has an adjusted
R2 ¼ 0:33 (column 1 of Table 2). Research ECI, however, is only
a minor predictor of income inequality, providing little improve-
ment to the explanatory power (adjusted R2 ¼ 0:36, column 4 of
Table 2).

Again, the model combining trade and technology provides the
best explanatory power (columns 5–11 of Table 2). However, the
interaction term between trade and technology is not significant,
meaning that the two complexities do not behave as substitutes or
complements. The multidimensional model is given in column 5
of Table 2 (adjusted R2 ¼ 0:56). This model is also robust when
including the log of population and log of human capital and
outperforms similar models based on production intensity,
measures of diversification, and other measures of complexity.
The final model—the one that best explains international
variations in income inequality—includes the log of population
and human capital in addition to the multidimensional ECI and
the Kuznets term (see Supplementary Note 5).

Emission intensity. Trade complexity is known to be associated
with lower greenhouse gas emissions per unit of output30 and
better environmental performance50,51. The idea is that the
emissions required to, for instance, produce a unit of GDP by
extracting tin ore are larger than the emissions required to pro-
duce a unit of GDP by manufacturing metal-cutting machines.
Here, we explore whether the technology and research

dimensions add to the ability of trade complexity to explain
emission intensity by modeling the logarithm of a country’s
yearly greenhouse gas emissions per unit of GDP (in kilotons of
CO2 equivalent per dollar of GDP). Larger values represent larger
emission intensity. We divide our analysis into five panels:
1996–1999, 2000–2003, 2004–2007, 2008–2011, 2012–2015, and
2016–2019. The baseline model includes the logs of the GDP per
capita (constant PPP dollars), population, human capital, and
natural resource exports, as well as time-fixed effects (see Sup-
plementary Note 6).

Unlike in the previous two cases, here we find that individual
ECI measures do not perform better than metrics of concentra-
tion (Entropy, Herfindahl–Hirschman index) and other complex-
ity measures (Fitness) (see Supplementary Note 6). Nevertheless,
the best multidimensional complexity model is robust and
includes the three-way interaction between trade, technology,
and research complexity (adjusted R2 ¼ 0:40, column 12 of
Table 3, Fig. 3c). This implies that countries that score high in all
dimensions (e.g., Sweden, France, Austria) have the lowest
emission intensities. The final model also includes all of the
variables from the baseline model: measures of population size,
human capital, natural resource exports per capita, and produc-
tion intensity (the model in column 11). This means that the
measures of complexity explain variations in emission intensities
that go beyond the variation accounted for by the natural
resource export intensity of an economy.

Finally, we run an alternative model with embodied emission
intensities as the dependent variable (see Supplementary Note 7).
Embodied emissions add territorial and imported emissions and
subtract exported emissions52,53. Thus, they are an indicator of
the emissions related to local consumption. We expect embodied
emissions to behave differently than emission intensities because
they are a consumption indicator. Complexity metrics are
estimators of productive capacities, and thus, we expect them to
correlate with the characteristics of an economy’s productive
sectors. We should not expect, however, ECI to explain
consumption patterns, especially those of imported products.
As expected, we do not find a robust relationship between
complexity and embodied emission intensity (the correlation is
positive but not robust).

In Fig. 3, we summarize our empirical findings. Adding
complexity metrics for technology and research can improve the
ability of the regression models to explain variations in economic
growth, income inequality, and emission intensity. In fact, our
final models explain more than 50% of cross-country variation in
economic growth and income inequality and almost 40% of the
variations in emission intensity (Fig. 3a–c), a drastic increase
compared to including only trade metrics. Technology complex-
ity adds to the ability of trade complexity to explain economic
growth and income inequality, and trade, technology, and
research complexity complement each other in their ability to
explain greenhouse gas emissions (Fig. 3d–f). We also calculate
the overall marginal effect of the different ECI coefficients by
creating a multidimensional ECI by weighting each ECI
coefficient according to the size of the regression coefficient in
the final model and re-estimating the final model of economic
growth, income inequality, and emissions intensity. The multi-
dimensional ECI is correlated with increases in economic growth
and decreases in income inequality and emissions intensity
(Fig. 3g–i).

Nevertheless, we find that the individual effect of different
dimensions of complexity is not always linear since complexity
estimates interact. In the case of economic growth, the negative
interaction suggests a mild substitution between these two
variables (high complexity in exports and technology helps
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explain growth, but there is no additional effect of scoring high on
both). In the case of inequality, the effects seem to be linear and
additive since the interaction term here is not significant. Finally,
for emission intensities, we find significance across all interaction
terms, meaning that we expect to observe lower emissions in
economies that score high in the three complexity metrics. This
validates the idea that complexities in different forms of activities
combine to explain inclusive green growth. But are these results
robust to possible omitted variables?

Instrumental variable. To further validate these results, we
pursue an instrumental variable approach where we replace a
country’s complexity values with those of its three most similar
non-neighbors (countries with a similar specialization pattern
but that do not share a land or maritime border). The idea is
that there might be factors that are either local (e.g., culture,
geography) or relevant only to certain dependent variables (e.g.,
country-specific environmental policies for GHG emission

intensity) that could drive both complexity and macroeconomic
outcomes. To decouple local factors and conditions from our
complexity estimates, we replace the complexity values of each
country with the average of the three non-neighboring countries
with the most similar specialization pattern (based on the
conditional probability that two countries are specialized in the
same vector of activities54 (exports, technologies, research
areas), see Supplementary Note 8). For example, in 2014, Japan’s
export structure was similar to that of Germany, Great Britain,
and Czechia, whereas Australia’s technological structure was
similar to Great Britain, Spain, and Canada. In Supplementary
Note 8, we provide a full list of the three most similar economies
in 2014 for every country and dimension used in our analysis.
We find the results remain virtually unchanged, reducing the
risk that the explanatory value of these complexity metrics
comes from an omitted local factor (F-statistics for the Wald
restriction tests are given in Tables 1–3, see also Supplementary
Note 8 for first and second stage results).

Fig. 3 Explaining international variations in economic growth, income inequality, and emission intensity with multidimensional economic complexity.
a–c Contribution of the baseline, ECIs, and other covariates to the variance explained by various models (adjusted R2) for a economic growth, b income
inequality, and c emission intensity. The baseline adjusted R2s are presented in gray, the contributions of the three individual ECIs and of the
multidimensional ECI in orange, and the variance explained by additional factors in the final model is shown in red. d–f Error bars for the marginal effects
(with 95% confidence intervals) for the ECI coefficients in the final models for d economic growth (Supplementary Table 4, column 17), e income inequality
(Supplementary Table 12, column 17), and f emission intensity (Supplementary Table 21, column 14). g–i The conditional correlation between the
multidimensional ECI (created by weighting each ECI coefficient according to the size of the regression coefficient in the final model) and g economic
growth, h income inequality, and i emission intensity. Conditional correlations are obtained by controlling for all other factors included in the final models.
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Discussion
Economic complexity methods have become important tools to
explain regional and international variations in inclusive green
growth13,55–61. Yet, most applied work on economic complexity
relies on metrics derived from trade data that are limited in their
ability to capture information from non-trade activities. This can
lead to distorted estimates of the complexity of certain countries
and limited information about how different types of activities
combine to explain variations in inclusive green growth.

Here, we combined trade, technology, and research data to
explore the role of complexity metrics in inclusive green growth.
We found that technology complexity adds to the ability of trade
complexity to explain economic growth and income inequality
and that trade, technology, and research complexity complement
each other in their ability to explain greenhouse gas emissions.
We also found that complexities expressed in different forms of
activities sometimes interact. Trade and technology complexities
are partly substitutes in the growth regression but not in the
inequality model. Moreover, in the emission intensities model,
the highest predictive power was obtained by the model with the
triple interaction, meaning that lower emission intensities cor-
relate with countries that score high in all three metrics of
complexity.

But what do these results mean?
On the one hand, product exports and patent applications can

be easily tied to monetary outcomes such as economic growth or
income inequality (e.g., product exports generate revenues,
whereas patents generate royalties). Thus, the structure of these
activities should contribute directly to monetary outcomes, unlike
the geography of research papers which may have a more indirect
effect. Emission intensities, on the other hand, seem to correlate
negatively with the presence of complexity in trade, technology,
and research, suggesting that countries with lower emissions are
sophisticated across these three dimensions. For instance, Aus-
tralia’s high emission intensity can be explained by its lack of
sophistication in exports53. Yet, we should also expect Australia’s
emission intensity to be relatively low compared to countries with
a similar export structure because of Australia’s high complexity
in technology and research.

These results are relevant for identifying strategic areas for
economic diversification and development, as they provide a
more holistic target than the one provided by metrics of trade
complexity alone30,32. In fact, much of the recent work in smart
specialization has focused on single relatedness-complexity dia-
grams in attempts to identify activities that are both accessible
and attractive. Our approach can be used to expand this in two
important ways, by evaluating multiple targets and considering
multiple diversification options. For instance, beyond complexity,
we can evaluate the inequality and emissions implications of a
new activity (this was already anticipated in Hartmann et al.25 for
inequality and in Romero and Gramkow30 for emissions, but it
has not been put together). Similarly, we can look at relatedness
across a series of activities (e.g., diversification not only in pro-
duct exports but in patents and research areas). For instance,
some countries may have an easier time climbing the technology
ladder than the export ladder. Thus, putting these ideas together
suggests a more comprehensive strategic landscape for strategic
economic development, balancing multiple targets (growth,
inequality, emissions) and opportunities (products, patents, and
research). This should be of interest to policymakers using
complexity metrics for inclusive green development and reinforce
the idea that metrics of economic complexity go beyond measures
of trade sophistication33,34,60,62,63.

Yet, this approach is not without limitations.
First, patent application and research publication data also

have limitations. For instance, since patent applications and

research documents are usually written in English, these datasets
can favor both English-speaking countries (e.g., USA, Australia)
and countries with high proficiency in English (e.g., Netherlands,
Sweden). Moreover, patent applications may differ from granted
patents and could potentially be used to game patent-based
indicators by actors willing to submit spurious patents to increase
their reported output in certain technologies. The use of patent
applications, however, is common in the geography of innovation
literature, and hence, our use of it makes our work comparable to
previous research40,62.

Second, there are plenty of activities that are not captured in
either trade, patent, or research publication data—such as ser-
vices, digital products, and cultural activities. These may capture
additional aspects of the complexity of economies that would
need to be included in a more comprehensive multidimensional
framework16,64,65. Unfortunately, the current state of the art does
not include internationally comparable fine-grained datasets for
these additional activities (e.g., service trade data are too aggre-
gate to approximate the productive structure of an economy, see
ref. 66 and Supplementary Note 9).

Third, our research is also limited by differences in the gran-
ularity of the three datasets: trade data are the most granular, with
about 1200 unique products, while research publication data
involves only about 300 subject categories. This may be one of the
reasons why we do not see strong effects from research com-
plexity in economic growth and income inequality and one of the
reasons why combining these datasets into a unified matrix (e.g.,
by concatenating or multiplying these matrices) is nontrivial.

Fourth, these results cannot be readily generalized to other
geographic scales, such as states and provinces. For instance,
while future economic growth has been shown to correlate with
the complexity of countries13,15,17,20,23 and regions64, the rela-
tionship between complexity and inequality is known to reverse
at the regional scale21,65–68. Thus, this approach cannot tell us
much about regional effects, which could be different from those
observed on the international scale21,68–71.

Fifth, our analysis is also limited by the potential multi-
collinearity of the variables (e.g., human capital is correlated with
ECI). This multicollinearity, however, should lead to larger
standard errors and would play against finding significance. Our
results, however, are still robust despite this data limitation.

Finally, spelling out the implications of this multidimensional
approach can be challenging. Not only because they lean on
multiple targets but because not all countries may be simulta-
neously sophisticated. Indeed, the international (and even regio-
nal) division of labor pushes us to question the possibility that all
countries and regions could become equally sophisticated. Still,
there is the possibility for the world to make progress in that
direction. For instance, extractive activities can vary from
exploitative and labor-intensive manual operations to sophisti-
cated and highly automated capital-intensive processes. The same
applies to agriculture. Urban transportation systems can also be
improved in ways that reduce emissions and travel times (e.g.,
electric bicycles, rail, etc.). So, while it may be hard for all
economies to become sophisticated, there is plenty of room to
sophisticate less advanced economies. While these increases in
sophistication may not bring them to the top of the complexity
ladder, they may still enable more sustainable, inclusive, and
prosperous economies in the developing world.

Yet, multidimensional complexity improves upon the state of
the art when explaining international differences in economic
growth, income inequality, and greenhouse gas emissions. These
findings advance our understanding of the role of economic
complexity in inclusive green growth and should motivate new
research on comprehensive metrics of complexity and sustainable
development.

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/s43247-023-00770-0

10 COMMUNICATIONS EARTH & ENVIRONMENT |           (2023) 4:130 | https://doi.org/10.1038/s43247-023-00770-0 | www.nature.com/commsenv

www.nature.com/commsenv


Methods
Economic complexity metrics are derived from specialization matrices, summar-
izing the geography of multiple economic activities (using dimensionality reduction
techniques akin to Singular Value Decomposition or Principal Component
Analysis)28,42. In particular, given an output matrix Xcp, summarizing the exports,
patents, or publications of an economy c in an activity p, we can estimate the
economic complexity index ECIc of an economy and the product complexity index
PCIp of an activity by first normalizing and binarizing this matrix:

Rcp ¼ ðXcpXÞ=ðXpXc
Þ;

Mcp ¼
1 if Rcp ≥ 1

0 otherwise

�
;

ð1Þ

where muted indexes have been added over (e.g., Xp ¼ ∑
c
Xcp) and Rcp stands for

the revealed comparative advantage of economy c in activity p. Then, we define the
iterative mapping:

ECIc ¼ 1
Mc

∑
p
McpPCIp;

PCIp ¼ 1
Mp

∑
c
McpECIc:

ð2Þ

That is, according to Eq. (2), the complexity of an economy c is defined as the
average complexity of the activities p present in it (and vice-versa). The normal-
ization steps in Eqs. (1) and (2) are required to make the units of observation
comparable (e.g., China and Uruguay are very different in terms of size). The
solution of Eq. (2) can be obtained by calculating the eigenvector corresponding to
the second largest eigenvalue of the matrix:

Mcc0 ¼ ∑
pc0

McpMc0p
McMp

ð3Þ

Which is a matrix of similarity between economies c and c’ normalized by the
sum of the rows and columns of the binary specialization matrix Mcp (it considers
similarity among economies counting more strongly rare coincidences).

To obtain ECIc, the values of the eigenvector are normalized using a z-score
transformation (meaning that the average complexity is 0). In regression analyses,
we further normalize the values of ECIc to be nonnegative using a max-min
technique (i.e., they are between 0 and 1).

We build our results using the standard definition of ECI13,15 because of mul-
tiple reasons. First, because this is a widely used definition, it makes our results
more readily comparable with previous research. Second, because it is a definition
designed for data on the geography of economic activities and focused on where
activities come from instead of where they are consumed, we can apply it directly
to our three datasets (without the need for special adaptations). Nevertheless,
throughout the remainder of the paper, we also compare our results with two
alternative definitions of economic complexity, the fitness index46,47, and the
innovation-adjusted ECI40 (i-ECI). These controls and their definition are pre-
sented in the Supplementary Information. We find our results to be robust to
controlling for these alternative definitions.

Data availability
The data that support the findings of this study are available at: https://doi.org/10.7910/
DVN/K4MEFW.

Code availability
The code needed to reproduce the results is available from V.S. upon request.
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