
Since Adam Smith’s pin factory, wealth has been related 
to the division of knowledge and labour. Yet, even 
though scholars have long recognized economies as 
complex systems1–6, the empirical study of economic 
complexity only accelerated in the past decade, with the 
emergence of new data and methods.

Like traditional approaches to economics, economic 
complexity focuses on the duality between economic  
inputs and outputs. But, unlike traditional approaches, 
which either aggregate output — as gross domestic 
product (GDP) does — or assume the nature of inputs 
— such as capital, labour and knowledge — economic 
complexity methods embrace fine- grained data on 
thousands of economic activities to learn both abstract 
factors of production and the way they combine into 
thousands of outputs. This is made possible by apply-
ing dimensionality reduction techniques to data on 
the geography of activities, such as product exports, 
employment by industry or patents by technology. These  
techniques — which are related to matrix factorization 
and are common in machine learning — provide a 
power ful way to summarize the geography of economic 
output and can be used to construct predictors of a  
location’s diversification and development potential.

The study of economic complexity accelerated dur-
ing the last decade thanks to two contributions. The first 
involved the introduction of metrics of relatedness7,8, 
which measure the overall affinity between a specific 
activity and a location. Relatedness metrics explain path 
dependencies and predict which activities will grow or 
decline in a location. They help answer questions such 
as how ‘far’ Quito, Kiev or Guadalajara are from having a 
thriving pharmaceutical industry. The second contribu-
tion was the development of metrics of complexity9. These 
use data on the geography of activities (such as exports by 
country or region, or employment by city and industry) 
to estimate the availability, diversity and sophistication 

of the factors or inputs present in an economy. Metrics of 
complexity extract key information about an economy’s 
capacity to generate9 and distribute income10.

Unlike previous approaches to economic growth 
and development, which attempt to identify individ-
ual factors, relatedness and complexity methods are 
agnostic about the nature of factors. Instead, they try 
to estimate their combined presence, without making 
strong assumptions about what these factors may be. 
For instance, relatedness metrics can be used to esti-
mate the combined presence of inputs that are specific to  
an activity, no matter if these inputs involve specific 
forms of labour, capital or institutions. Relatedness can, 
then, be used to anticipate changes in specialization 
patterns7,8,11–18, such as the probability that a location 
enters or exits an activity.

Complexity metrics apply dimensionality reduction 
techniques (related to singular value decomposition 
(SVD); Box 1) to identify the combinations of factors 
that best explain the geography of multiple economic 
activities. Unlike in traditional growth models, which 
assume the nature of factors, dimensionality reduction 
techniques can be used to learn factors directly from the 
data. Economic complexity metrics are useful for pre-
dicting economic growth9,19–25, income inequality10,26–29 
and greenhouse gas emissions30–33.

Beyond data and methods, the study of economic 
complexity was motivated by other key trends: the 
revival of industrial policy, the growth of artificial intel-
ligence (AI) and the development of endogenous growth 
theory.

Complexity methods grew together with a revival of 
industrial policy34,35 and the realization that economic 
development requires upgrading. Complexity meth-
ods help characterize detailed economic structures and 
provide a quantitative base for industrial policy efforts. 
Today, these efforts are embodied in Europe’s Smart 
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Specialization Strategy36–38, China’s special economic 
zones39–41, Mexico’s Smart Diversification strategy or 
Canada’s Superclusters Initiative, to name a few. They 
include the use of complexity methods to study the struc-
tures of economies including the United States14,42–46, 
China26,47–52, Mexico25,53,54, Canada55, Russia56,57, 
Brazil58–62, Uruguay63, Australia64, Turkey65–67, Spain68, 
Italy69–73, Paraguay74 and the United Kingdom75,76.

The literature in economic complexity also coincides 
with the rise of machine learning and AI, and can be 
seen as the use of machine learning in the study of eco-
nomic geography. Relatedness is akin to recommender 
systems77,78, similar to those used to predict clicks or pur-
chases online, but used, instead, to predict the activities 
that a region is more likely to enter or exit in the future. 
Likewise, metrics of economic complexity can be seen as 
the application of dimensionality reduction techniques 
(such as SVD or principal components) to data on the 
geography of economic activities. These methods are 
based on the idea of learning the vectors that are best at 
explaining the structure of a specialization matrix instead 
of assuming the nature of the factors of production.

Finally, the study of economic complexity can also be 
seen as a continuation of endogenous growth theory79–81. 
Endogenous growth theory established that economic 
growth was the growth of knowledge79,81. Knowledge is 
a non- rival good79,81 — it can be used simultaneously by 
multiple people — thus, it is the only productive fac-
tor that can grow in per- capita terms. But knowledge 
is not easy to reproduce or share82–85. Its diffusion is 
limited by geography82,85, relatedness7,8,11,19,58,86,87 and 
social networks88–90. Knowledge can also be tacit91–93 — 
not codifiable and hard to communicate. Knowledge is 
also multifarious, being highly specific to an economic 
task or activity58,93. This makes knowledge geographi-
cally sticky94,95. It follows that the presence of activities 
in a location carries information about the productive 
knowledge that a location has accumulated and about 
the knowledge that the activities present in it require19,93. 
Economic complexity methods attempt to distil that 
information from fine- grained data.

But the literature on economic complexity is still 
young. The goal of this Review is to summarize its 

advances, with a focus on applications of relatedness7 
and complexity9. This Review aims to equip those inter-
ested in contributing to this literature with a basic under-
standing of key concepts and contributions. The article 
is structured as follows. I first put the ideas of economic 
complexity in a broader scientific context, by connecting 
them with work in economic geography, innovation and  
complex systems. Then, I formally introduce the con-
cepts of relatedness and economic complexity. Next,  
I focus on the applications of relatedness and complexity. 
This includes the literature unpacking relatedness into 
multiple dimensions and the literature focused on relat-
edness and labour. I also review the literature connecting 
economic complexity to differences in economic growth, 
income inequality, gender inequality, human develop-
ment and greenhouse emissions. I finalize by discussing 
future directions and policy implications.

Complexity and the economy
The science of ‘organized complexity’
What is complexity?

In his paper “Science and complexity”96, the math-
ematician and AI pioneer Warren Weaver argued that 
science progressed as people discovered the mathemat-
ical languages needed to describe systems of increasing 
complexity.

For Weaver, science began with the ‘science of sim-
plicity.’ This involved all systems that could be described 
using trajectories, such as the motion of a pendulum or 
the orbit of a planet. Calculus and differential equations 
were the languages of the science of simplicity, but were 
ineffective to describe other systems.

The science of ‘disorganized complexity’ came next. 
Together with the rise of steam engines and thermody-
namics, humans discovered a science that did not rely 
on the idea of a trajectory but on that of probability. 
Probability ensembles do not require tracking the iden-
tity or trajectory of the elements involved, and, thus, can 
be used to describe systems like gases.

But Weaver intuited that our reality goes beyond 
what we can understand using trajectories and probabil-
ities, so he postulated the emergence of a third science, 
focused on vast systems for which the identity of the ele-
ments involved and their patterns of interaction could 
not be ignored. He called this the science of ‘organized 
complexity.’

At the time of Weaver’s publication, the data and 
methods needed to quantitatively describe complex 
system were first emerging. But, since then, increases 
in fine- grained data, computational capacity and ana-
lytical methods have produced an early understanding 
of complex systems that is starting to honour Weaver’s 
vision. This understanding uses matrices or networks 
to create representations of complex systems that do 
not ignore the identity of the elements involved or their 
interactions. These ideas, which are now prevalent in 
fields such as machine learning and physics, have begun 
to make their way into economics under the umbrella of 
economic complexity.

Two foundational ideas of economic complexity — 
relatedness and complexity — use network methods to 
create variables that satisfy Weaver’s vision. Relatedness 
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Box 1 | Economic complexity and production functions

Economic	complexity	is	closely	related	to	the	idea	of	production	function	in	
economics	—	a	function	connecting	economic	inputs	(factors)	and	outputs.	
This	relation	is	mediated	by	singular	value	decomposition	(SVD),	a	factor-
ization	technique	used	to	learn	the	vectors	(factors)	that	best	explain	the	
structure	of	a	matrix.	When	applied	to	a	specialization	matrix,	SVD	can	learn		
the	factors	that	best	explain	the	geography	of	multiple	economic	activities.
Consider	an	m	×	n	specialization	matrix	R	(technically,	the	logarithm	of	R).	

Its	SVD	factorization	is:

= × ×R U S V (35)

where	U	is	an	m	×	m	orthogonal	matrix,	V	an	n	×	n	orthogonal	matrix	and		
S	an	m	×	n	diagonal	matrix	(upper	panel	of	figure).	SVD	can	be	used	to	
reconstruct	the	factorized	specialization	matrix	with	an	arbitrary	degree	
of	precision:

R S U V S U V S U V (36)nn n n11 1 1
T

22 2 2
T T⊗ ⊗ ⊗= + + … +

where	Un	and	Vn	are	the	nth	column	vectors	of	U	(principal	components)	
and	V	(singular	vectors),	respectively,	and	⊗	is	the	outer	product.
Now	consider	a	Cobb–Douglas	production	function	connecting	

economic	output	(Y)	to	productive	factors	(capital	(K)	and	labour	(L))	and	
productivity	(A):

Y AK L (37)= α β

where	α	and	β	are	elasticities.	Generalized	to	n	factors	(F1,	F2,…,	Fn),	the	
production	function	takes	the	form:

Y AF F F (38)1 2 3
1 2 3= …α α α

which	has	a	logarithm:

y a f f f (39)n n1 1 2 2α α α= + + + … +

with	lowercase	letters	denoting	logarithms.
The	SVD	of	a	specialization	matrix	is	equivalent	to	a	production	function	

for	multiple	outputs,	where	the	factors	(U1,	U2,…,	Un	for	locations	and	V1,	
V2,…,	Vn	for	activities)	and	the	elasticities	(S11,	S22,…)	are	all	learned	from	
data.	Since	SVD	provides	the	best	way	to	approximate	a	matrix	with	a	
limited	number	of	vectors,	it	represents	the	best	possible	factor	
decomposition	of	a	specialization	matrix.
The	economic	complexity	index	(ECI)	is	closely	related	to	the	leading	

vectors	obtained	through	SVD	(r2	=	89%	in	the	example	used	in	the	figure),	
showing	that	economic	complexity	summarizes	learned	vectors	or	factors	
that	are	optimal	at	explaining	the	geography	of	multiple	economic	
activities.
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metrics preserve the identity of locations and activities 
while leveraging information about interactions, such as 
information about activities in other locations. Metrics 
of economic complexity measure the presence of mul-
tiple factors simultaneously, not by using aggregation 
(simplicity) or distributions (disorganized complex-
ity) but by using dimensionality reduction techniques 
that preserve the identity of the elements involved and 
consider their interactions9.

A brief history of relatedness
The introduction of network methods invigorated the 
study of relatedness, but relatedness was not a new 
idea to economics. Relatedness is tied to the idea of 
absorptive capacity97 — the notion that a firm’s abil-
ity to absorb new knowledge is a function of its prior 
level of related knowledge. This idea, when applied to 
knowledge diffusion82–86,98,99, implies that the success of 
regions entering an economic activity depends not only 
on geographical and cultural forms of proximity (such as 
distance or language) but on the cognitive and techno-
logical proximity between the new activity and a region’s 
prior activities86,100–102.

Earlier studies on relatedness focused on the growth 
of locations specialized in bundles of related or unre-
lated activities103,104. This question — explored using 
metrics of agglomeration98,103,105 or the hierarchy of 
administrative classifications104 — was motivated by 
two competing theories of spillovers (the excess bene-
fits or costs ‘spilling over’ among economic activities): 
within- sector or Marshall–Arrow–Romer (MAR) spillo-
vers, and between- sector or Jacobs spillovers. MAR spill-
overs are considered key for productivity and short- term 
growth, whereas Jacobs spillovers are considered key for 
innovation and long- term growth106.

Relatedness spans the continuum between MAR and 
Jacobs, because related activities are neither exactly the 
same nor completely different104,107. This distinction is 
important, because identical activities tend to compete 
for customers and resources, whereas distant activities 
provide scant learning opportunities107. Relatedness 
captures the intuition that learning requires interac-
tions among activities that are similar, but not similar 
enough to be competing. It is about spillovers between 
different activities that, nevertheless, share combinations 
of inputs, knowledge and routines. This brings related-
ness close to the literature on industrial clusters, which 
also considers intersectoral links that go beyond shared 
knowledge108,109.

The quantitative study of relatedness advanced 
with the introduction of measures of proximity7 or 
coagglomeration98, which connect pairs of activities, 
and later with the introduction of methods to estimate 
the affinity or relatedness between a location and an 
activity (instead of pairs of activities)7. Proximity meas-
ures have been used to create maps of similar products7, 
industries11,12,58, technologies13,14,42, occupations16,17,46,110, 
research areas15,18, sports111 and music112. These networks 
reveal differences in the topologies of similar activi-
ties and show that relatedness predicts the activities 
that a location will enter or exit in the future7,12,15,19,41. 
Indeed, the ‘principle of relatedness’8 is a statistical law 

stating that the probability that a location enters or exits 
an activity is correlated with the presence of related 
activities.

A brief history of complexity metrics
The second accelerator of the study of economic com-
plexity was the development of metrics of complexity9. 
Unlike the development of relatedness, the discovery 
of economic complexity represented a more significant 
departure from the previous literature.

Previous literature focused on the relevance of pro-
ductive structures had produced a variety of indicators 
of technological sophistication113–115. But quantitative 
efforts did not rely on iterative or dimensionality reduc-
tion methods (an exception is the study reported in 
ref.116) but on indicators that averaged over other indi-
cators, such as data on patents, human capital117–119 or 
income120.

Complexity metrics were originally discovered 
using international trade data and validated by their 
ability to predict future economic growth9,19. This find-
ing was quickly replicated20–24, stimulating the explora-
tion of similar metrics121–126, as well as its application to 
non- export datasets, such as data on patents by technol-
ogy for cities in the United States44,127 or employment 
by location and industry for Mexico25 and the United 
States45,128.

More recently, scholars have begun using economic 
complexity to explore additional implications of eco-
nomic structures, such as geographic differences in 
income inequality10,26–29, human development129,130 and 
greenhouse gas emissions30–33,131.

Today, economic complexity indicators are published 
regularly in online tools, such as the Observatory of 
Economic Complexity132, or official government web-
sites, such as Data México from Mexico’s Secretary of 
the Economy.

Current directions
Work in economic complexity has shifted from using 
relatedness and complexity as explanatory factors to 
focusing on unpacking these metrics and exploring 
their factors, causes and consequences. There is now a 
vibrant literature centred on efforts to unpack related-
ness into multiple dimensions46,58,133–138. This literature 
has examined how different forms of relatedness (such as 
industry- specific and occupation- specific knowledge58) 
affect the diversification, growth and survival of firms, or 
how policies and institutions modulate the role of relat-
edness in diversification135,136. The idea of relatedness 
has also been extended to datasets that combine multi-
ple types of activities (such as patents, papers and prod-
ucts)139,140 and to bilateral trade relationships134. There are 
also efforts focused on exploring the role of relatedness 
on labour outcomes141, firm growth142, sustainability143–147 
and entrepreneurship148. Finally, the study of relatedness 
also involves the development of strategies designed 
to optimize industrial diversification paths149 and the 
evaluation of industrial policy efforts150,151.

Work on economic complexity has also broad-
ened, and is beginning to consider the consequences 
of complexity on a variety of outcomes, such as income 

www.nature.com/natrevphys

R e v i e w s



inequality10,26–28,152, gender inequality153,154, human 
development129,130,155, output volatility156, productivity157, 
health158 and greenhouse gas emissions30,31,131. This work 
has also explored factors that contribute to the growth 
of complexity, such as different modes of taxation159, 
intellectual property rights160, institutions161, demo-
graphics162,163, transportation50, digital connectivity164  
and structural reforms165.

Together, these findings are helping us expand our 
understanding of the geography of economic activities, 
and its consequences, in a way that honours Weaver’s 
vision.

Basic definitions
Specialization matrices
We organize data on the geography of activities using 
matrices that connect locations (such as countries, cities 
or regions; denoted with the subscript c) and activities 
(such as products, industries or technologies; denoted 
with the subscript p). Examples of location–activity 
matrices include exports by region and product, total 
payroll by city and industry, or patents by metro-
politan area and technology. In this notation, such a  
matrix is:

X p c= volume of activity in location (1)cp

where the volume of an activity may refer to exports, 
sales, total payroll, value added, employment or other 
quantities.

Because matrices on the geography of activities 
include units of observation with sizes that are not 
readily comparable (for instance, China and Uruguay), 
they need to be normalized into specialization matrices. 
A specialization matrix (R) is defined by dividing each 
entry of Xcp by the sum of its respective row and col-
umn. This metric is known as the location quotient or 
revealed comparative advantage. Defining the sum of the 
whole matrix as ∑X X= cp cp and using Einstein notation, 
so missing indices indicate summed variables (for any 
matrix Aij, ∑A A=i j ij), the specialization matrix Rcp is:

R X X X X= / (2)cp cp c p

Rcp is the ratio between the observed (Xcp) and expected 
(XcXp/X) level of economic activity in a location. 
Locations with Rcp > 1 are considered to be specialized 
in activity p.

Sometimes, it is useful to normalize matrices using 
population data124,125,166. If Pc is the population of location 
c and ∑P P= c c is the population of the world, then a 
population- normalized specialization matrix166 is:

R X P P X= / (3)cp cp c p
pop

Unlike R, which can only be >1 for about half of all 
activities (because the sum of activities in a same loca-
tion is in its denominator), Rpop can be >1 for all activi-
ties. This normalization helps remove noise produced by 
fluctuations in commodity prices, seasonal employment 
or currency exchange rates. For instance, when oil prices 
decrease, the revealed comparative advantage of non- oil 

activities in oil- producing economies automatically 
increases. Another common method to reduce noise is 
to time- average specialization matrices over 3–5 years. 
Finally, because R and Rpop are defined as ratios, they 
should be log- transformed when used in statistical 
models.

In addition, we define the binary specialization 
matrix M as:

M
R R
R R

=
1 if ≥
0 if <

(4)
*

*cp
cp

cp








where R* = 1 when using R and R* = 0.25 when using 
Rpop (ref.166). M helps remove excess variation by focus-
ing only on significant presences (Mcp = 1) and absences 
(Mcp = 0).

The marginals of M count the number of activi-
ties present in a location (diversity) and the number  
of locations where an activity is present (ubiquity). 
Formally:

∑M M= = diversity (5)c p cp

∑M M= = ubiquity (6)p c cp

A property of these geographic matrices is that the 
average ubiquity of the activities present in a loca-
tion tends to correlate negatively with that location’s 
diversity9. This fact is related to the matrix property 
known as nestedness166 and can be seen as evidence that 
more complex knowledge diffuses with more difficulty44, 
and, hence, is only available at a few diverse locations.

It is worth noting that these datasets are limited 
by the coarsening, frequency and universality of the 
administrative classifications and geographic bounda-
ries used to define them. Some datasets, such as those 
on product exports, are extremely fine- grained (>5,000 
product categories when using six- digit Harmonized 
System data), whereas others are notorious for their 
coarsening and lack of quality (for instance, Service 
Trade data, which has a few dozen categories). Trade 
data are commonly used because they use internation-
ally comparable classifications, something that is not 
true for data on industries or occupations, which use 
classifications limited to countries or trade blocks (such 
as the North American Free Trade Agreement (NAFTA) 
or Mercosur). Additionally, some geographic units may 
be more meaningful from an economic perspective, 
such as metropolitan areas, while others are purely 
administrative (counties, postal codes).

Although these limitations are not particular to work 
in economic complexity, they need to be considered. 
In fact, even when data are of relatively good quality, 
metrics can be noisy when applied naively to matrices 
that include disparate economic activities and locations. 
For instance, international trade data include countries 
as small as Tuvalu, an island nation with <12,000 peo-
ple, and China, which has a population five orders of 
magnitude larger. Thus, instead of using all data, it is 
appropriate to cut the left tails of distributions. For 
instance, in four- digit international trade data, it makes 
sense to consider only economies that export more than 
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one billion USD and have a population of at least one 
million. Likewise, it is common to disregard products 
with small export volumes (for instance, <500 million 
in global exports at the four- digit level). These tricks of 
the trade are important to perform meaningful compar-
isons and are used in all data types (including products, 
patents or industries).

Relatedness
Relatedness measures the affinity between a location 
and an activity. Yet, since a good measure of affinity is 
expected to predict changes in specialization patterns, 
relatedness can be defined as a predictor of changes in 
specialization that is specific to a location–activity pair 
and that goes beyond the naive prediction (no change). 

Relatedness
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Formally, relatedness ωcp can be defined as a predictor of 
a matrix of specialization that satisfies:

R t t R t Bω t( + d ) = ( ) + ( ) + … (7)cp cp cp

where B is a positive and significant coefficient. This 
same idea is readily applied to other specialization 
matrices (such as M and Rpop) and can include data from 
multiple time periods (for instance, Rcp(t), Rcp(t − 1)).

Although there are, in principle, multiple ways to 
measure relatedness, during the past decade, most work 
has built on a metric known as relatedness density7. 
Relatedness density looks at the number of similar 
activities that are present in a location. It can be readily  
extended to include activities in similar locations167  
or extended to multiple groups of activities (for instance, 
by combining trade and patent data)139,140.

To define relatedness density, we first define a meas-
ure of proximity7. Metrics of proximity connect pairs 
of activities (ϕpp′) or pairs of locations (ϕcc′). The first 
metric yields the idea of ‘product space’7, ‘industry 
space’11, ‘technology space’13 or ‘research space15 (fig. 1). 
The second metric yields the idea of a ‘country space’ or 
‘producer space’167.

There are multiple ways to define proximity. These 
include looking at the collocation or coagglomeration98 
of activities, using metrics such as the minimum 
conditional probability7:

∑
ϕ

M M

M M
=

max( , )
(8)pp

c cp cp

p p′
′

′

or by looking at the correlation between rows or columns 
of a specialization matrix167:

′ ′ϕ R R= corr(log( ), log( )) (9)cc cp c p

Proximity has also been measured by looking at 
industries that produce products in the same plants11, 
by mapping labour flows among industries or occupa-
tions (skill- relatedness)12,58,168,169 or by looking at the ratio 
between observed and predicted collocation patterns11.

Proximity networks have been constructed for a 
variety of datasets, revealing differences in the pat-
terns of these networks (fig. 1). For instance, networks 

connecting products (such as the product space) tend 
to be characterized by some well- defined clusters (such 
as garments, machinery or electronics) and a clear 
separation between a core and a periphery. Networks 
connecting research activities or patents tend to have 
a ring structure15,44,170. Networks connecting industries 
tend to have a dumbbell structure, with a cluster for 
services and another for manufacturing. Regardless of  
the structure, these networks are the basis for measur-
ing the relatedness or affinity between activities and 
locations7.

Using any measure of proximity, we can define relat-
edness density as the fraction of related activities present 
in a location:

∑
∑

∑
∑

ω
M ϕ

ϕ
ω

M ϕ

ϕ
= or = (10)cp

p cp pp

p pp
cp

c c p c c

c c c

′ ′ ′

′ ′

′ ′ ′
′ ′

This simple form allows variations, such as using 
the single most similar activity7 or squaring proximity 
values, such as using weights equal to ϕpp

2

′
 to increase 

the weight of more proximate activities. For the most 
part, different measures of proximity produce correlated 
estimates of related density, making the exact functional 
forms used for ϕpp′ or ωcp a choice made by researchers at 
the time of implementation.

One important caveat, however, is that relatedness 
density (Eq. (10)) is highly correlated with diversity (Mc). 
This correlation is not a problem if relatedness is used 
to make predictions for a single location or activity. But 
it can be problematic when comparing across locations 
or activities. In that case, one should use measures of 
relative relatedness171, which can be constructed by tak-
ing the Z- score of the values or dividing density by the 
diversity and ubiquity of a location and activity.

Finally, although the literature has used mostly 
related ness density as an indicator, it is possible to esti-
mate relatedness using other methods, such as latent 
factors for locations and activities in the latent compar-
ative advantage method172, an Indian buffet process173 
or SVD174.

Economic complexity
Economic complexity metrics measure economic capac-
ity using methods that are related to dimensionality 
reduction (SVD or principal component analysis). They 
also represent generalized dimensionality reduced pro-
duction functions (Box 1). Economic complexity metrics 
can be used to measure the presence of multiple eco-
nomic factors in a way that is agnostic about what these 
factors might be.

Formally, the complexity Kc of location c and the 
complexity Kp of activity p can be defined as a function 
of each other. This means that they are solutions to a  
set of coupled equations:

K f M K= ( , ), (11)c cp p

.K g M K= ( , ) (12)p cp c

These equations state that the complexity of a loca-
tion is a function of the complexity of the activities that 

Fig. 1 | Relatedness is constructed using networks that connect similar activities. 
These networks have topologies that depend on the type of activity considered. The 
network of similar products (product space) has well- defined clusters and a periphery 
composed of primary products. Red nodes represent products exported by Egypt (with 
revealed comparative advantage >1). The relatedness figure colours nodes according to 
relatedness density, which measures the affinity between an activity and an economy’s 
current productive structure (Egypt in this case). The other figures show networks 
constructed using patent data, research publication data and data for industries and 
occupations. Colours represent categories (technologies for patents, research areas for 
papers, industrial sectors for industries and occupational categories for occupations). 
Technology space 1 reprinted with permission from ref.13, Taylor and Francis. Technology 
space 2 reprinted with permission from ref.14, OUP. Research space 1 reprinted with 
permission from ref.15, Springer Nature Limited. Research space 2 is reprinted from ref.18, 
CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/). Industry space 1 reprinted 
with permission from ref.58, PNAS. Industry space 2 reprinted with permission from ref.12, 
Wiley. Occupation space 1 reprinted with permission from ref.17, AAAS. Occupation  
space 2 is reprinted from ref.16, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).
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are present in it, and vice versa. This system is equivalent 
to a set of decoupled self- consistent equations (one for 
locations and another one for activities):

K f M g M K= ( , ( , )), (13)c cp cp c

.K g M f M K= ( , ( , )) (14)p cp cp p

These general equations already eliminate important 
alternatives. For instance, they rule out metrics of mar-
ket concentration, like those used in disorganized com-
plexity approaches, such as the Shannon information 
entropy or the Herfindahl–Hirschman index (HHI). 
Metrics of diversity or concentration disregard informa-
tion about the identity of elements involved by failing to 
couple locations and activities (for instance, HHI takes 
the form Kc = f(Mcp)).

The idea of measuring complexity using a set of cou-
pled equations was introduced9 in 2009, using simple 
averages for f and g. The resulting metrics are known as 
the economic complexity index (ECI; Kc) and the prod-
uct complexity index (PCI; Kp). These are defined by the 
following system of equations:

∑K
M

M K= 1
(15)c

c
p cp p

∑K
M

M K= 1
(16)p

p
c cp c

which is equivalent to the reciprocal average method 
used in ecology175,176. Because both equations are linear, 
they imply self- consistent equations of the form:

�
′ ′K M K= (17)c cc c

K M K= (18)p pp p′ ′
�

with:

′
′� ∑M

M M

M M
= (19)cc p

cp c p

c p

and:

′
′∑M

M M

M M
= (20)pp c

cp cp

c p

�

The solutions to this system are the eigenvectors of 
Mcc
�

′
 and 

′Mpp
� , which are also principal components  

of Mcp (ref.176).
Because both 

′
�Mcc  and �Mpp′

 are technically row-  
stochastic matrices176,177 (∑ M = 1c cc′ ′

�  and �
′ ′∑ M = 1p pp , also 

known as Markov or transition matrices), their first eigen-
vector is a vector of 1s, making the second eigenvector the 
leading metric of economic complexity.

The second eigenvector of a stochastic matrix is the 
leading correction to the equilibrium distribution and 
represents a partition of the data. In economic terms, the 
ECI is the vector that is best at dividing economies into 
groups based on the activities that are present in them. 
As discussed in Box 1, economic complexity is intimately 
connected to SVD, a matrix factorization technique that 
provides the best way to explain the structure of a matrix.

To eliminate constant factors, metrics of eco-
nomic complexity are commonly normalized using a 
Z- transform (valid for the ECI, which does not follow 
a heavy- tailed distribution):

K K KECI = ( − mean( ))/stdev( ), (21)c c c c

K K KPCI = ( − mean( ))/stdev( ), (22)p p p p

ECI values >0 represent locations with a complex-
ity that is larger than the average location in the dataset 
(similarly for PCI).

TaBle 1 and figs 2,3 show rankings of economic com-
plexity for countries, regions and cities (metropolitan 
statistical areas, hereafter, MSAs) in the United States. 
These were calculated using data on payroll by industry, 
patents by technology and exports by product. At the 
international level, economic complexity rankings are 
dominated by technologically advanced economies, such 
as Japan, Switzerland, Chinese Taipei, Germany and 
South Korea. In the United States, Silicon Valley (San 
Jose) leads both rankings, but these, nevertheless, show 
interesting differences. Payroll data rankings, which 
are related to employment, are led by large technolog-
ically advanced cities (San Francisco, Boston, Seattle 
and Los Angeles). Complexity rankings based on pat-
ent data also include small cities that are well- known 
enclaves of innovation, such as Boise, Idaho, the home 
of Micron, the leading manufacturer of computer mem-
ory and solid- state technology in the United States, and 
Rochester, Minnesota, home of 3M, a company well 
known for its innovations in materials science.

Table 1 | Rankings of economic complexity

Rank Economic complexity rankings

Us metro areas: payroll by industry 
(2018)

Us metro areas: patents by 
technology (2018)

countries/territories: 
exports (2018)

1 San Jose–Sunnyvale–Santa Clara, CA San Jose–Sunnyvale–Santa Clara, CA Japan

2 San Francisco–Oakland–Hayward, CA Austin–Round Rock–San Marcos, TX Switzerland

3 Boston–Cambridge–Newton, MA–NH San Francisco–Oakland–Fremont, CA Chinese Taipei

4 Los Angeles–Long Beach–Anaheim, CA Boise City–Nampa, ID Germany

5 Seattle–Tacoma–Bellevue, WA Rochester, MN South Korea
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Economic complexity, when defined as iterative 
averages (ECI), satisfies important properties. First, the 
complexity of a location only increases when a location 
adds an activity that is above its current average. This 
feature avoids a metric of complexity that increases 
when adding activities that are of low sophistication. 
Second, because �Mcc′

 and Mpp
�

′
 are normalized by the 

sum of rows (Mc) and columns (Mp), they give more 
weight to unexpected coincidences (coincidences with 
more information, in the information theory sense). 
Third, because these complexity metrics come from 
diagonalizing proximity matrices, they provide simi-
lar values for locations that have similar patterns of 
specialization. Fourth, the ECI also correlates strongly 
(r ~ [83–93%]) with traditional indicators of technolog-
ical sophistication178, such as the indexes proposed in 
refs117–119. But, unlike these indexes, which are weighted 
averages of various metrics of patents, technology dif-
fusion and human capital, the ECI does not require 
aggregation through predefined weights (the weights 
and the factors to aggregate are determined endo-
genously by the method)178. The ECI also does not need  
priors about which activities are more technologically  

sophisticated, because that is inferred directly from 
the data. Finally, metrics of complexity are connected  
to the idea of relatedness, because they are derived from 
the spectrum of proximity matrices (

′Mcc
�  and �

′Mpp  are 
asymmetric proximity matrices).

These properties have made the ECI and the PCI 
attractive methods to estimate complexity using trade 
data9,19, patent data44, occupation data128, industry data45 
and cultural consumption data179.

Since the introduction of the ECI and the PCI9, 
vari ations to the method have been proposed. 
Examples include the use of Google PageRank180 on 
a population-based matrix of specialization (Rpop)125, 
variations in the functional forms for f and g121,122,181 
and methods that expand the calculations of complex-
ity to include data on products and patents, such as 
the tripartite approach introduced in refs123,124 or the 
innovation-adjusted ECI126.

These variations yield similar results. For instance, 
comparing the ECI and log fitness121 using exports data 
shows a correlation of r2 = 86% (ref.10). Using employ-
ment data for cities in the United States, the ECI and log 
fitness correlate with r2 = 90.3% (ref.45). Using data for 
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Fig. 2 | Economic complexity. Map of the economic complexity index (ECI) estimated using international trade data 
(panel a), as well as maps for the ECI of metropolitan statistical areas (MSAs) in the United States estimated using payroll 
by industry and patents by technology (panel b).
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companies that traded in Shanghai and Shenzhen, the 
ECI and fitness correlate with r2 = 76% (ref.49). Similarly, 
both variables have been found to be almost identically 
predictive of economic growth20.

Common misconceptions
Because economic complexity is not a simple idea, 
its understanding has been mired by some common 
misconceptions.

One misconception is to equate economic complexity 
to measures of export diversity or concentration. This 
is wrong on two accounts. First, economic complexity, 
as measured by the ECI, is orthogonal176 — or nearly 
orthogonal — to measures of diversity or concentration. 
This orthogonality can be seen by comparing a popular 
measure of concentration, the HHI, with the ECI (fig. 4).

Second, economic complexity is not about exports 
or trade (the use of trade data is convenient but not 
essential). It is a dimensionality reduction technique 
that summarizes the vectors that best explain the geog-
raphy of thousands of economic activities and has been 
applied successfully to data on patents44, occupations128, 
industries45 and cultural consumption179. This means 
that trying to validate, or invalidate, economic complex-
ity by using results from the export diversity literature is 
a non sequitur.

At the international level, it is also interesting to see 
that economic complexity does not correlate with pop-
ulation, meaning that it provides a measure of factors 
driving the geography of activities that is independent 
of population (fig. 4). However, this is not the case at the 
subnational level (for instance, for US MSAs).
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Fig. 3 | Economic complexity index for regions in Brazil, china, Japan, canada, spain and Russia. These maps  
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subnational data and world variables used international data132. Data available at oec.world.
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Application of relatedness
The principle of relatedness
Relatedness is important because it predicts the probabil-
ity that a location increases or decreases its specialization 
in an activity. This empirical law, known as the principle 
of relatedness (fig. 5), has been shown to hold for mul-
tiple types of activities (products7,19, industries11,12,50,58,182, 
patents13,14, occupations16,17 and research areas15,18,183) and 
for multiple geographies (such as cities or regions). It can 
be formally defined by the inequality:

ω

R

t
d

d

d

d
> 0 (23)

cp

cp

c p,

where ∣ c ,p indicates that location-specific and 
activity-specific factors are controlled for.

For practical purposes, it is useful to put the principle 
of relatedness in a regression form135,136:

F FR t t R t Bω t t t ε( + d ) = ( ) + ( ) + ( ) + ( ) + (24)cp cp cp c p
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where Fc and Fp are vectors of location- specific and 
activity- specific factors, respectively, and ε is the error 
or residual. The principle of relatedness is the idea that 
the coefficient B is positive and significant.

Unpacking relatedness
Unpacking relatedness into components. The first 
method to unpack relatedness constructs models that 
predict changes in patterns of specialization (the activi-
ties a location enters or exits) and uses them to compare 
relatedness metrics derived from different datasets. This 
method is used to study the contribution of different 
relatedness channels to changes in specialization46,58,133,134 
(for instance, the relative importance of industry- 
relatedness versus occupation- relatedness58). These 
efforts use either models of the form:

R t t R B ω B ω ε( + d ) = + + + … + (25)cp cp cp cp
1 1 2 2

where the ωcp
i  are different metrics of relatedness, or:

R t t R Bω ε( + d ) = + + … + (26)cp cp cp̂

where ω̂cp is a ‘partialized’ metric of relatedness, which is 
detrended from its overlap with other metrics:

ω B ω B ω ε= + + … + (27)cp cp cp
1 2 2 3 3

ω ε= (28)cp
1̂

These methods have been used to unpack relatedness 
on a variety of settings.

Using data for the entire formal- sector economy 
of Brazil, ref.58 split relatedness into three channels: 
industry- specific, occupation- specific and location- 
specific relatedness. Industry- specific and occupation- 
specific relatedness were based on previous work 
experience in related industries and occupations 
(measured using labour flow proximities12). Location- 
specific relatedness asked if individuals had worked 

in the same location. Data on the birth of firms indi-
cated that industry- specific relatedness, followed by 
location- specific relatedness, were the most relevant at 
explaining the entry, growth and survival of new firms58. 
Surprisingly, occupation- specific relatedness did not 
matter for the entry of pioneer firms (firms operating 
in an industry that was not previously present in that 
location).

In a similar work, the entry and exit of occupations 
in US MSAs was split into three relatedness channels: 
complementarities (occupations used in the same acti-
vity), similarity (occupations described by similar skills) 
and local synergy (occupations collocating in the same 
cities)46. After controlling for multiple possible con-
founders, the three relatedness channels were found to 
be positive and significant predictors of occupational 
entries (increases in Rcp that cross the Rcp = 1 threshold) 
and exits (decreases in Rcp that cross the Rcp = 1 threshold).  
Interestingly, collocation relatedness (local synergies) 
was the strongest predictor of entries and exits.

The unpacking of relatedness has also been used to 
study temporal changes in the relative strength of differ-
ent sources of collocation. At the beginning of the twen-
tieth century, industries tended to collocate with their 
value- chain partners, but, today, skill requirements are 
more important at explaining collocation138.

Other studies have unpacked relatedness in the con-
text of international trade133,134, by either using multiple 
measures of proximity among products133 or by extending  
relatedness to bilateral trade dimensions134,184,185.

Partialized measures of relatedness for technology, 
labour and supply chains have been used to reveal that 
relatedness- mediated entries are more likely to occur in 
upstream links (such as from assembly to parts) than  
in downstream links (from raw materials to products)133. 
This finding has important development implications, 
because it implies that diversification from raw materials 
to intermediate inputs tends to be a less frequent (proba-
bly less efficient) diversification path than diversification 
from final goods to intermediate inputs.
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The idea of relatedness has also been extended to 
bilateral trade data by splitting it into three bilateral 
related ness channels: relatedness among products, 
exporters (origins) and importers (destinations)134. This 
extends the study of relatedness to three- dimensional 
matrices (from Rcp to Rcpd, where d stands for desti-
nation) and unites efforts that had looked at these 
forms of related ness separately (product7, exporter167, 
importer184,185). Product relatedness turns out to be the 
strongest predictor of future trade patterns, especially 
for technologically sophisticated products134. Moreover, 
the effect of relatedness on diversification is compara-
ble in size with other variables, being approximately half 
that of sharing a common language and approximately 
one- third of sharing a border134. These are relatively large 
effects.

Relatedness, path- breaking diversification and insti-
tutions. The second method to unpack relatedness 
involves interacting relatedness with other factors to 
study how these factors affect the role of relatedness on 
changes in specialization. This method uses models of 
the form:

. . . (29)R t t R B ω B F ω B F ω ε( + d ) = + + + + +cp cp cp c cp p cp1 2 3

where Fc and Fp are location- specific and activity- specific 
factors (for instance, level of education of a location) and 
B2 and B3 are coefficients for the interaction between 
relatedness and these factors (for instance, related-
ness × level of education). Accordingly, the effect of 
relatedness in the presence of a factor Fc is, technically, 
B B F ω( + )c cp1 2 , and B2 can be interpreted as a coefficient 

modifying the effect of relatedness in the presence of Fc.
This method has been used mainly to identify factors 

that mitigate the effects of relatedness to help identify 
path- breaking development.

This method has been used to explore how different 
varieties of capitalism (coordinated market economies 
versus liberal market economies) enhance or diminish 
the effect of relatedness on diversification135. Relatedness 
is a stronger driver of diversification for coordinated 
market economies, making liberal market economies 
relatively more successful at path- breaking forms of 
development.

In a similar vein, ref.136 uses data from China to inter-
act relatedness with foreign direct investment (FDI), 
imports, research and development (R&D), human 
capital and other variables. They find the interaction 
between FDI, R&D and human capital to be negative 
and significant, meaning that locations with higher levels 
of FDI, R&D and human capital are less constrained by 
relatedness (and engage in slightly more path- breaking 
development). These findings are consistent with results 
on international trade data171, which indicate that higher 
levels of education are associated with more unrelated 
entries.

Likewise, pollution was interacted with relatedness 
to find that regions with higher levels of pollution are 
more likely to enter unrelated activities. This finding was 
validated using pollution in nearby cities as an instru-
mental variable137. The proposed mechanism is that 

areas that are more polluted are subject to environmental 
regulations that promote path- breaking development137.

But not all factors mitigate the role of relatedness; 
some enhance it. Interacting density with several 
forms of social capital reveals that bridging social cap-
ital enhances the effects of relatedness186, meaning that 
European regions rich in bridging social capital are more 
likely to enter related economic activities.

Although these studies show that the role of related-
ness can be modulated by the presence of local factors,  
it is worth noting that these interaction terms are, for the 
most part, small in magnitude. This makes these effects 
technically second order to the main effect of relatedness.

Relatedness and labour
The intersection between relatedness and labour flows 
is another area of active research.

Workers are more likely to move among related 
industries and occupations12,58,187,188. But the impact of 
these flows depends on the degree of relatedness between 
sources and destinations. For instance, the inflow of 
related, but not identical, workers was shown to improve 
the performance of plants and firms in both Sweden168,189 
and Hungary169. The flow of related workers also helped 
speed up the recovery of regions in the Netherlands190. 
Relatedness has also been shown to impact the success 
of migrant inventors. Inventors that migrate have higher 
impact when their knowledge is related to that of the 
incoming region191.

Relatedness also plays an important role in the fate 
of displaced workers. Data from establishment closures 
in Germany indicate that, in regions with a large con-
centration of the same industry, displaced workers find 
jobs faster and experience smaller earning losses141. 
Likewise, the presence of related industries in a region 
protects workers against long- term unemployment, 
although workers who move to related industries expe-
rience larger earning losses than those who find jobs in 
the same industry141. Data from Sweden reveal evidence 
that displaced migrants who find a job that matches their 
industry and occupation display the highest earnings 
compared with all displaced workers192. Similar evidence 
has been found of steep earning losses for workers who 
switch occupations193. All in all, the literature suggests 
that relatedness helps dampen the effects of labour dis-
placement, by protecting workers against unemployment 
and large losses in income.

Relatedness and sustainability
Several studies have built on the idea of relatedness, 
and, in particular, on the product space, to study oppor-
tunities for green development. Such studies include 
efforts to map the potential of economies to produce a 
target group of green products (such as wind turbines 
or solar cells) based on their specialization on related 
products143–146,194 or green jobs60. As expected, green 
products grow more rapidly in economies that have 
closely related products146,194. The effect of relatedness 
has also been shown to be stronger than that of political 
support194. The idea that relatedness promotes diversi-
fication into green activities has also been confirmed 
using international data on patents147.
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Applications of economic complexity
During the past decade, metrics of economic complex-
ity have been used to formalize the impact of economic 
structures in outcomes such as economic growth9,19–23,25, 
income inequality10,26–29,152, greenhouse emissions30–32, 
employment195 and the spatial concentration of 
economic activities95.

Economic growth
This literature began with work showing that the ECI 
predicted future economic growth9. More precisely, that 
an economy’s future level of income (such as GDP per 
capita) was correlated with the ECI after controlling 
for its initial level of income and other factors (Fc).  
This finding can be described by a baseline model of 
the form:

t t A t
B t CF ε

log(GDPPC ( + d )) = log(GDPPC ( ))
+ ECI ( ) + + … +

(30)c c

c c

The fact that the ECI is a significant predictor of 
long- term economic growth (on the scale of decades) 
can be interpreted as evidence that the complexity of an 
economy pegs an equilibrium level of income.

This finding is robust to controlling for numerous 
factors19 and has been replicated by multiple studies 
during the past decade using both international and 
subnational data20–25,196,197.

At the international level, the connection between 
economic complexity and economic growth has been 
shown to be robust to controlling for natural resource 
exports, education, export concentration, institutions 
and competitiveness19. The relationship between the 
ECI and long- term economic growth has also been 
reproduced using six- digit trade data, while explor-
ing numerous robustness checks24. The ECI has been 
reconstructed using merchandise and service exports 
data reproducing the positive correlation between eco-
nomic complexity and growth in GDP per capita, after 
controlling for time fixed effects, income per capita 
and increase in natural resource exports during the 
observation period20. There is also evidence in favour 
of economic complexity predicting economic growth 
in a panel of 210 territories, and a positive interaction 
has been found between economic complexity and 
human capital198. Similarly, a positive correlation has 
been found between an innovation- adjusted ECI and 
future economic growth126. Finally, data from world 
fairs held in Paris from 1855 to 1900 were used to 
calculate historical ECIs for dozens of economies23. 
Despite the sparse dataset, it was shown that one stand-
ard deviation increases in the ECI contributed ~3–4% 
to future economic growth, when controlling for ini-
tial income and static country and year characteristics 
(fixed effects).

At the subnational level, the connection between 
economic complexity and growth has been documented 
using a panel of 221 Chinese cities and multiple controls 
(such as human capital, openness, FDI and investment 
rate)22, finding that one extra standard deviation in eco-
nomic complexity contributes ~0.7 percentage points 
of yearly per- capita economic growth. Similarly, using 

employment data from Mexico, it was found that one 
standard deviation in economic complexity is associ-
ated with an increase in the rate of economic growth of 
Mexican states of about 0.4% per year, while controlling 
for a state’s initial GDP per capita, oil production and 
time fixed effects25. Likewise, data on Italian provinces 
were used to show that one standard deviation in eco-
nomic complexity was associated with 7–10% growth in 
GDP per capita in a 3- year interval199. Using occupation 
data for the United States also resulted in evidence of 
a positive correlation between occupational complex-
ity and future economic growth; splitting complexity 
between services and manufacturing reveals a more 
prominent role for service complexity200. There is also 
evidence that economic complexity helped the conver-
gence of lagging Eastern European regions, but also 
contributes to the increasing gaps between Europe’s 
more and less advanced regions201. Finally, a positive 
correlation between economic complexity and growth 
has been found using interregional trade data from 
Spain197.

Income inequality
Beyond wealth, economic complexity has also been 
linked to variations in income inequality. Early work 
showed that comparable regions (in terms of income, 
education and other factors) exhibit less income inequal-
ity when they are more complex10. This finding is related 
to the idea of Kuznets curve202, the notion that inequality 
rises and falls during development. However, instead of 
an inverted U- shape, economic complexity provides a 
linear (or quasi- linear) relationship because it separates 
middle- income regions with extractive economies and 
high levels of income inequality, such as Peru and Chile, 
from those with complex economies and comparatively 
lower levels of inequality, such as Malaysia. Following 
this work, ref.152 uses a cross- country sample to show a 
negative correlation between economic complexity and 
income inequality, but also finds evidence that — within 
a country — inequality and complexity increase together 
over time. Moreover, refs152,203 use interaction terms to 
show that the ability of economic complexity to explain 
inequality is mediated by the presence of high levels of 
education and good institutions, suggesting that com-
plexity has an equalizing effect only in the presence of 
good underlying labour market conditions.

The relationship between economic complexity and 
inequality, however, appears to reverse at the subnational 
level. State- level data for Brazil indicate a positive cor-
relation between economic complexity and income ine-
quality, with a small but significant quadratic coefficient 
(suggesting some curvature to the relationship, but not 
enough to make it an inverted U- shape)28. Likewise, a 
positive correlation between complexity in US counties 
and income inequality has been found (again, with a 
small but quadratic coefficient)27.

Economic complexity has also been connected 
to reductions in gender inequalities. Using linked 
employer–employee data for the entire formal sector 
economy of Brazil, ref.154 shows that higher complexity 
industries and occupations exhibit lower gender gaps 
in wages. Economic complexity has also been found to 
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reduce gender inequalities in education at the tertiary 
level, regardless of income levels153.

Other studies on complexity and inequality include 
ref.26, which reports that complexity contributes to the 
reduction of income inequality in urban areas in China, 
but that urban–rural inequality increases in regions that 
have more complex export structures. Looking instead 
at the relationship between income inequality and the 
complexity of an economy’s trading partners shows that 
trade with more complex economies is correlated with 
reductions in income inequality29.

Complexity methods have also been used to estimate 
expected levels of income inequality for activities, and, 
consequently, for the locations in which these activities 
are present. The product Gini index has been defined 
as the “average level of income inequality of a product’s 
exporters, weighted by the importance of each product 
in a country’s export basket”10. Using our notation:

∑
∑
W

W
PGI =

Gini
(31)p

c cp c

c cp

where Ginic is the Gini index, a classic measure of 
income inequality, and weights are given by the share  
of an activity in a location:

′ ′∑
W M

X

X
= (32)cp cp

cp

p cp

The product Gini index can be used to create a coun-
terfactual level of income inequality for an economy, 
given its portfolio of activities10.

Sustainability
The ECI has also been linked to sustainability and 
climate change outcomes, such as greenhouse gas 
emissions30–33,59,204 and green jobs60.

Combining data on the environmental performance 
index and the ECI reveals a strong and positive relation-
ship between the ECI and environmental performance, 
but also a negative relationship between the ECI and air 
quality32,59. This finding has been verified using several 
controls and by using publication and patent data to 
instrument for economic complexity.

Another popular hypothesis is the environmental 
Kuznets curve, the idea that pollution grows and then 
declines with development31,59,131,205,206. This hypoth-
esis has been explored using CO2 emission data for 
France. After controlling for GDP per capita and its 
square, higher economic complexity is related to sig-
nificantly lower CO2 emissions31. Using a sample of 
55 countries, environmental degradation has been seen 
to rise with economic complexity for low- income and 
middle- income economies, and decline with economic 
complexity for high- income economies206. Similarly, 
an inverse- U relationship between economic complex-
ity and emissions has been found using a panel of 25 
European countries30. More recently, this hypothesis was 
explored using a panel of 118 economies and a dynamic 
model, finding environmental pollution to increase and 
then decrease with economic complexity205. These find-
ings suggest the existence of an environmental Kuznets 

curve31,131, in which emissions grow and then decline 
with increasing level of development (as measured by 
economic complexity).

More recently, the effect of the ECI and the lagged 
ECI on greenhouse gas emission intensity (that is, emis-
sions per unit of GDP) has been studied33. After con-
trolling for numerous factors, including GDP per capita, 
economic openness, urbanization and an economy’s 
share of manufacturing and agriculture, there is evidence 
for a negative and significant correlation between the 
lagged ECI and emission intensity.

Following the methods in ref.10, product- level indi-
ces of environmental performance, CO2 emissions 
and CO2 emission intensity have been constructed32,33. 
These indexes enable associating a level of emissions to 
a product and, consequently, to a productive structure.

Human development and health
Economic complexity has also been connected to human 
development129,130 and health indicators158. Reference129 
reports a positive relationship between economic com-
plexity and human development, whereas ref.130 reports 
no relationship between those variables.

A positive relationship has been found between eco-
nomic complexity and health outcomes158 in a study that 
used the average complexity of neighbouring countries 
as a mean to address endogeneity concerns.

Causality
Establishing causality with observational data is never 
easy. Economic complexity efforts, therefore, have been 
cautious about making causal claims. Nevertheless, there 
is evidence favouring a causal direction.

The contributions connecting economic complex-
ity to economic growth, inequality and emissions are 
based on regressions that include multiple controls, 
fixed effects and robustness checks19,22,24,25,198. The abil-
ity of economic complexity to predict future economic 
growth has been shown to be robust to controlling for 
institutions19, education19,22, concentration of economic 
activities9,19, openness22, natural resource exports19,25 and 
foreign direct investments22, and has been reproduced 
using regional and international data on employment, 
payroll and trade. These are simple but important forms 
of identification that help reduce omitted- variable bias 
and, together, add evidence on a direction of causality. 
Additionally, these relationships have been tested using 
instrumental variables and Granger causality meth-
ods. For instance, the relationship between complexity 
and health outcomes has been tested using the average 
complexity of neighbouring economies as an instru-
ment for complexity158. Complexity has been found 
to Granger- cause GDP per- capita growth, but not the 
converse207.

However, because complexity measures are about the 
factors that best explain the geographic distribution of 
economic activities, it is important not to neglect com-
mon sense. Betting that the arrow of causality points 
from complexity to economic growth is consistent with 
the recent growth of China, Singapore and Korea, and 
with the economic troubles faced by Greece in 2009. 
Betting that the arrow of causality points from high 
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GDP to economic complexity is betting that countries 
with high per- capita GDP and low complexity, such as 
Qatar, Oman, Libya, Bahrain, Gabon and Kuwait, will 
increase their complexity in the future. The fact that the 
latter seems more improbable than the former captures 
an intuition about economic growth that is consistent 
with the expectations of economists going back to Adam 
Smith: the idea that growth is related to the division of 
knowledge and labour.

Models
Models of economic complexity have usually followed 
combinatorial approaches208–211. These can be described 
using colourful analogies, such as combining ingredi-
ents in a recipe210, letters in words19 or Lego blocks in 
models9,210.

One such combinatorial model — introduced in 
2009 (ref.9) and solved analytically in 2011 (ref.208) — 
reproduces the structure of specialization matrices by 
modelling them as a combination of two matrices. One 
connects locations and inputs (a) (Cca ~ [0, 1]), and 
the other connects activities to the inputs they require 
(Ppa ~ [0, 1]). The model assumes that an activity is pres-
ent in a location (Mcp = 1) if that location has all of the 
inputs required by that activity. That is:

∑ ∑M C C P= 1 if = (33)cp a ca a ca pa

Even when assuming that C and P are random binary 
matrices (with probabilities r and q, respectively), this 
simple model reproduces some stylized facts, such as 
the negative correlation between a location’s diversity 
(Mc) and the average ubiquity of its activities (which is 
related to the matrix property known as nestedness)9,208. 
Formally, the model predicts that, on average:
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where Nc is the number of locations and Np is the number 
of activities in the data, and Na is the number of inputs in 
the model. This model also reproduces the empirically 
observed distribution of coagglomeration proximities208 
and explains differences in the scaling exponents found 
in the urban scaling laws212 presented in ref.213.

Combinatorial models also have interesting theo-
retical properties. They show increasing returns to the 
accumulation of inputs, but only when inputs are either 
highly specific (there are many of them) or hard to 
acquire (for instance, in a world with limited knowledge 
diffusion)208. Increasing returns imply development traps 
for locations with few inputs (in the letter–word analogy, 
they have a few letters but not enough to complete many 
words), meaning that these models predict economic 
divergence.

Combinatorial models also reveal unexpected prop-
erties. The evolution of a combinatorial model has been 
studied in the context of two different strategies210. One 
focused on adding inputs that readily combined with 
others to produce an output; the other strategy chose 

inputs randomly. The usefulness of inputs (the number 
of outputs that need them) crosses over, that is, inputs 
that were relatively useless in the beginning of the inno-
vation process become useful later. This crossover is the 
consequence of a conservation law hidden in these com-
binatorial models210. The conservation law means that 
the usefulness of components multiplied by the complex-
ity of outputs (measured as the number of components 
they require) is fixed throughout the innovation process.

Policy implications
How does economic complexity evolve? And what strat-
egies should we use to promote it? In the last decade, 
scholars have begun exploring how different strategies, 
constraints and factors affect changes in the complexity 
of economies.

A popular approach is to consider the relatedness 
and complexity of potential activities together in a 
diagram19,36. Relatedness measures how ‘easy’ it is to 
enter an activity for a specific location. Complexity 
gives a measure of that activity’s value. When applied 
to activities that are not present in a location, activities 
that are high in both relatedness and complexity repre-
sent the best ‘low- hanging fruit’ for diversification, and, 
hence, they define an efficient diversification frontier 
(maximizing complexity and the ease of entering into 
that activity).

This approach is an important way to measure 
whether diversification efforts tend to build on local 
capacities19,36,150. However, the evidence of whether 
regions actually follow relatedness is mixed. Evidence 
using patent data from Europe suggests that regions tend 
to enter activities at intermediate levels of relatedness151. 
Other efforts find little evidence of a connection between 
relatedness theory and practice150.

What is more uncomfortable about this approach, 
however, is that it may be too specific. By trying to iden-
tify specific products, technologies and industries, we 
may be reading too much into techniques that are rela-
tively new, and true on average, rather than for each data 
point. This concern has led to other approaches, which, 
instead of focusing on which activities to pick, focus on 
when to choose which type of activities.

Mathematical models and numerical simulations 
have shown that always targeting high- relatedness activi-
ties is a suboptimal way to maximize diversification149,214. 
Instead, economies should adapt their strategies by tar-
geting relatively unrelated but connected activities dur-
ing a window of opportunity that opens at intermediate 
levels of development. This work helps conceptualize 
economic diversification policies not as efforts designed 
to pick activities but as a portfolio allocation problem in 
which the mix of bets into related and unrelated activity 
changes with development. It is also an approach that is 
closer to the idea of leapfrogging — the idea that econ-
omies can skip intermediate technologies or stages of 
development — although leapfrogging involves success-
fully targeting industries with increasing returns during 
tight windows of opportunity215–217.

But since the growth of complexity is related to the 
growth of knowledge, policy efforts also draw inspira-
tion from works studying knowledge diffusion82–85, while 
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adding a few important nuances. For instance, complex-
ity has been shown to be negatively correlated with the 
diffusion of knowledge, meaning that more complex 
knowledge struggles to diffuse longer geographical 
distances44 (patent citations decay with distance more 
strongly for patents in complex technologies44). In addi-
tion, activities that are more complex tend to be more 
concentrated in space, suggesting that the accumula-
tion of complex knowledge tends to require large urban 
agglomerations95.

Scholars interested in the factors that affect the 
growth of complexity have also studied the influences 
of technology and policy in the growth of economic 
complexity.

When it comes to technology, the connection 
between economic complexity and internet usage has 
been explored using two instrumental variables: number 
of secure servers per million people and a civil liberty 
index164. This revealed a positive relationship between 
internet usage and increases in economic complexity, 
giving weight to arguments for policies designed to 
increase internet access. There is also evidence that, 
in China, new high- speed rail connections increased 
spillovers between the newly connected locations50, 
accelerating knowledge diffusion.

The connection between institutional factors and 
complexity has also been explored. Stronger intellectual 
property systems have been found to engender higher 
economic complexity, but only in economies with an 
above- average level of development and complexity160. 
Studying the link between economic complexity and 
taxation shows that economies that rely less on capi-
tal taxation relative to labour taxation tend to export 
more sophisticated goods159. When it comes to institu-
tions, evidence has been found that institutional quality 
helps improve economic complexity161. The relation-
ship between FDI and economic complexity has been 
explored in refs218–220. Economic complexity is found 
to increase with higher stocks of FDI, but mostly for 
well- educated and financially developed locations. 
Finally, studies on the effect of International Monetary 
Fund (IMF) structural adjustment programmes found 
no evidence of a positive effect of IMF programmes or 
conditionality requirements on economic complexity165.

When it comes to cultural and demographic factors, 
a positive relationship between economic complex-
ity and birthplace diversity has been found162 using a 
pseudo- gravity model. Likewise, a positive relation-
ship between LGBTQ+ inclusion and complexity was 
documented in ref.163.

Overall, work on the policy implications of eco-
nomic complexity has explored a variety of techniques 
and factors, from the use of methods to identify specific 
industries to theories on the optimal timing for different 
forms of diversification. The intersection of economic 
complexity and policy, however, continues to be an area 
of growing interest.

Outlook
In 1791, Alexander Hamilton’s report on manufactures 
changed the economic history of the United States221. By 
advocating that the United States needed to transcend 

its agricultural origins and develop more sophisticated 
economic activities such as manufacturing, Hamilton 
built a policy foundation on the idea that technological 
leadership and economic sophistication were key for the 
subsequent development of the United States.

But Hamilton’s intuition was diluted, together with 
the introduction of mathematical tools built on the 
idea of aggregation1. The use of prices and quantities as 
universal units of measurement allowed economists to 
aggregate diverse forms of capital and labour, giving rise 
to powerful mathematical models, at the cost of wash-
ing away the identity and idiosyncrasies of the elements 
involved.

Economic complexity methods replace the idea of 
aggregation with that of dimensionality reduction. This 
provides an additional set of analytical tools that is par-
ticularly useful to study differences in specialization and 
in macroeconomic outcomes, from inequality to growth 
(fig. 6). Yet, despite these advances, economic complexity 
efforts exist amidst a contradiction.

On the one hand, they are built on the idea that 
knowledge and capabilities are highly specific, and, 
hence, require methods honouring the idea of organized 
complexity advanced by Weaver96. On the other hand, 
economic complexity research has been mostly macro, 
at the level of countries, cities and regions, where those 
specificities cannot be clearly described.

The increasing availability of even more fine- grained 
data is starting to change that. Beyond exploring matri-
ces on the geography of activities, scholars can now study 
the specific inputs that go into the production of individ-
ual products. For instance, film credits have been used to 
study the increasing complexity of the movie industry222. 
This is a significant departure for work that has relied 
mostly on administrative records, where geographic 
units, products and inputs are based on standardized 
categorizations developed for tax and trade purposes. 
These categorizations do not capture nuances, such as 
the differences between a director of photography and 
a film editor. But the idea of studying the complexity 
of creative industries also speaks of a world in which 
knowledge- intense cultural activities, such as the pro-
duction of films, video games and software, are becom-
ing dominant sectors in many economies. It follows that 
the future of economic complexity research may not lie 
in the administrative records that fuelled the original 
contributions, but in online repositories of collaborative 
work, such as GitHub, LinkedIn or IMDb. This cultural 
turn is becoming visi ble in recent work focused on topics 
such as music112, sports111 or the geography of cultural 
exports223,224.

Another area that is of growing interest is the connec-
tion between economic complexity and industrial policy. 
While this is a well- trodden territory, economic com-
plexity methods have become attractive to policymakers, 
even though it is unclear whether they make a difference. 
Some studies have shown that innovation policies in  
Europe target activities of intermediate relatedness151, 
in line with the optimal diversification theory149. Other 
studies, focused on Europe’s Smart Specialization 
Strategy, find that many regions do not choose paths that 
are related to their current specialization150. The question 
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of when complexity approaches matter for science, inno-
vation and industrial policy, and how best to apply them, 
is still an open topic.

Still, existing areas of inquiry are far from depleted. 
For instance, although complex knowledge is known 
to diffuse more slowly44, there is much to learn about 
the speed of knowledge diffusion and its determinants. 
Similarly, despite early work on the dynamics of com-
plexity and relatedness225, there has been relatively little 
work on the dynamics of relatedness and proximity226,227. 
Finally, understanding the interaction and effect of spa-
tial scales, from countries to neighbourhoods228, is also 
a relatively open field.

There are also pending issues when it comes to meas-
uring complexity at multiple scales and using multiple 
data sources. The understanding of complexity met-
rics has improved in work exploring the linear algebra 
around it176. Yet, despite work estimating complexity 
using data on employment25,45,54,58,128 and patents44, 
many still confuse complexity with metrics of export 
diversification, leaving open the question of how to 

properly measure complexity at the international level 
by leveraging data on service trade, patents, publica-
tions and imports. These data limitations translate into 
measurement issues. For instance, when using trade 
data, the Australian economy ranks relatively low in 
economic complexity — because Australia’s exports are 
dominated by coal, iron ore and petroleum gases. But 
Australia is also one of the top service exporters in the 
world. The fact that service export data are coarse and 
do not add much to the estimation of complexity plays 
against Australia, but is more a limitation of the data 
than the methodology. A challenge for future research 
is the creation of measures of complexity that reduce the 
dimensionality of multiple data sources simultaneously 
(such as products, services, patents and research areas).

There is also work to do at the subnational level 
(regions, cities). Here, complexity measures need data 
that reflect the intensity of knowledge in a location. This 
means that measures of employment — for instance — 
may be inadequate proxies for economic activity when 
high employment reflects a lack of capital (such as the 

Economic growth
(Hidalgo and Hausmann 2009, 
Chavez et al. 2017, Ourens 
2012, Stojkoski 2016, Poncet 
and Waldemar 2013, Tacchela 
et al. 2018, Domini 2019)

Implications

Factors

Demographics

Institutions

Inequality
(Hartmann et al. 
2017)

FDI
(Antonietti and Franco 
2020, Kahn et al. 2020)

Transportation
(Gao et al. 2018)

Internet access
(Lapatinas 2019)

Intellectual property
(Sweet and Maggio 2015)

Unpacking relatedness
(Jara-Figueroa et al. 
2018, Farinha et al. 
2019, Diodato et al. 
2018, Jun et al. 2019, 
Bahar et al. 2020)

Unrelated diversification
(Boschma and Capone 
2015, Zhu et al. 2017, 
Huang and Zhu 2020, 
Pinheiro et al. 2018)

Taxation
(Lapatinas 2019)

Demographics
(Bahar et al. 
2020, Vu 2020)

Within countries
(Morais et al. 2018,
Sbardella et al. 2017)

Between countries
(Hartmann et al. 2017, 
Lee and Vu 2019)

Emissions
(Neagu and Teodoru 2019, 
Lapatinas et al. 2017, Romero 
and Gramkow 2020, 
Lapatinas et al. 2019) 

Atlas of economic
complexity
(Puritan Press 2011,
MIT Press 2014)

Relatedness
density
(Science 2007)

Technology

Dimensionality
reduction

Recommender
systems

Technologies
(Kogler et al. 
2013)

Occupations
(Muneepeerkaul 
et al. 2013)

Industries
(Neffke et al. 2011)

Research areas
(Guevara et al. 2016)

Endogenous growth
(Romer, Aghion)

Complex systems
(Kauffman, Holland, 
Mandelbrot)

Network science
(Barabasi, Newman, 
Watts)

Development 
economics
(Rodrik, Leontief)

Innovation economics
(Jaffe, Feldman, 
Audretsch)

Urban economics
(Ellison, Glaeser, Kerr)

Economic geography
(Boschma, Frenken, 
Rigby)

Evolutionary 
economics
(Nelson, Winter, Dosi)

Machine learning 
and statistics

Economic
complexity
(PNAS 2009)

Principle of 
relatedness
(Hidalgo et al. 2018)

Finance

Fig. 6 | summary of literature on economic complexity and relatedness. Due to space constraints, we only include  
a limited number of topics and papers. FDI, foreign direct investment; MIT, Massachusetts Institute of Technology;  
PNAS, Proceedings of the National Academy of Sciences of the United States of America.

www.nature.com/natrevphys

R e v i e w s



case of labour- intense non- mechanized farming). In 
fact, measures built on productivity or value- added data 
may reflect complexity better than measures based on 
employment229.

Still, the most important contribution of economic 
complexity may not be the discovery of new quantitative 
methods but the way in which it is helping reconfigure 
the academic landscape. Only a decade ago, network sci-
entists, economic geographers, innovation economists 

and development practitioners were part of different 
academic communities. Today, those working on relat-
edness, complexity and innovation are closer than ever. 
Bridging this gap was not easy, but now that this recon-
figuration is underway, we are starting to see knowl-
edge being recombined, just as theories of complexity 
predicted.
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